BATTERY CONDITION INDICATOR

Ever been caught by a battery that went flat at an embarrassing moment — like when you’ve just offered a friend a lift? The conversation goes a little flat when you’re both riding the bus to work, 20 minutes late. Jonathan Scott found a solution...

THE OLD, RELIABLE lead-acid battery may be way ahead of what ever is in second place for vehicle electrical systems, but they do need a ‘weather eye’ kept on them. Particularly if they’re out of warranty. The same applies to ‘reconditioned’ batteries, so often found in secondhand vehicles of some age.

That’s the problem with cars — running out of petrol and running out of battery produces the same heart-rending result. Immobility.

Most vehicles have a petrol gauge. Few have an equivalent for the battery. Many ‘older’ cars included a ‘charging current’ meter. This told you something about the car’s generator-regulator and required some interpretation to figure out whether the battery was in good health.

Probably the best way to check on the state of your battery is to use a hydrometer. However, hydrometers have a number of drawbacks. Being made of glass, they’re fragile and can’t be used while a car is in motion. The small amount of battery acid that remains on them presents a storage problem — the drips and fumes attack most metals and materials. They’re okay for the corner garage but justifying their cost, for the occasional use they get in home workshops, is not always possible.

Another method of testing battery condition is by checking the voltage ‘on load’. A lead-acid vehicle battery in a reasonable state of charge will have a terminal voltage under normal working load somewhere between 11.6 and 14.2 volts. When a battery shows a terminal voltage below 11.6 volts its capacity is markedly decreased and it will discharge fairly quickly. Like as not, it won’t turn the starter motor for very long! On the other hand, if the voltage on load is above 14.5 volts then the battery is definitely fully charged! However, if it remains that way for any length of time while the car is on the road, the vehicle’s alternator-regulator system is faulty and the battery may be damaged by overcharging.

Reading the battery voltage can be done in a number of ways. You could use a digital panel meter, set up as a voltmeter. Their drawback is that they cost nearly ten times as much as a hydrometer! The next best method is to use an ‘expanded-scale voltmeter’. Reading the voltage range between 11 and 15 volts on a meter face calibrated 0-16 volts is a squint-and-peer exercise. On a 0-30 volts scale, as used on many modern multimeters, it’s worse. A meter which reads between 11 volts at the low end of the scale and 16 volts at the high end is ideal. Hence, the term ‘expanded-scale’.
HOW IT WORKS - ETI 320

This circuit depends for its operation upon the different voltage drops across different colour LEDs.

At 20 mA the voltage drops across red, yellow and green LEDs are typically 1.7, 3.0 and 2.3 volts respectively. When the vehicle battery voltage is too low to cause either ZD1/ZD2 or ZD3 to conduct, Q1 and Q2 are held off by R3 and R5. Under these conditions the yellow LED is forward biased and conducts via D1 producing a potential of about 3.7 volts at point A (see circuit diagram). When the supply rises above about 11.6 volts ZD3 conducts, biasing Q2 on. By virtue of its lower voltage requirements the green LED conducts, reducing the voltage at point A to approximately 2.6 volts. This is not enough to bias D1/Led3 on, so the yellow LED goes off. The green LED ‘steals’ the bias from the yellow LED. When the supply rises above about 14.2 volts, Q1 is biased on and the red LED ‘steals’ the bias from the green. The potential at point A falls to two volts and only the red LED conducts. R1 limits the current through the LEDs. R2 and R4 limit the base currents into Q1 and Q2.

PARTS LIST - ETI 320

<table>
<thead>
<tr>
<th>Resistors all 1/4W, 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 470R</td>
</tr>
<tr>
<td>R2 100R</td>
</tr>
<tr>
<td>R3, R5 10k</td>
</tr>
<tr>
<td>R4 680R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 1N914</td>
</tr>
<tr>
<td>ZD1, ZD2 6V8 400 mW zener</td>
</tr>
<tr>
<td>ZD3 11V 400 mW zener</td>
</tr>
<tr>
<td>Q1, Q2 BC547, 8.9 or 8.10, 8.9 or common silicon NPN type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcb ETI 320</td>
</tr>
<tr>
<td>Aluminium angle bracket for underdash mounting.</td>
</tr>
</tbody>
</table>

The printed circuit board pattern.

However, you don’t want to be peering at a meter on the dash board when you’re driving through traffic. The range of voltage over which your battery is healthy is some two volts. An indicator which simply requires the occasional glance, and needs no ‘interpretation’, is what is really needed.

With this project, that’s exactly what we’ve done.

Go, caution, stop

We have devised a simple circuit that indicates as follows:

Yellow: battery ‘low’

Green: battery okay

Red: battery overcharging

When the battery voltage is below 11.5 volts, a yellow indicator lights. This indicates the battery is most likely undercharged or a heavy load (such as high power driving lights) is drawing excess current. When it is between 11.7 and about 14.2 volts the green indicator lights, letting you know all is sweet. If the red indicator lights, as it will if the voltage rises above 14.2 volts, maybe the vehicle’s voltage regulator needs adjusting or there is some other problem.

The circuit

The circuit is ingeniously simple, having barely a handful of parts. Reliability should be excellent.

We actually started out with a somewhat complex circuit. It used only two indicators and required you to ‘interpret’ what was happening. In trying to convert that to a yellow-green-red style of indication it sort of grew like topsy. This circuit had four transistors, a dozen resistors etc and didn’t look at all attractive as a simple project that the average hobbyist or even handyman could build one Sunday afternoon and get going immediately. A rival circuit was devised by another staff member using a common IC. This sparked a controversy as to which was the better! Certainly, both did the job required . . . but maybe there was a simpler method.

It was discovered that different coloured light emitting diodes (LEDs), which we had decided to use for the indicators in the project, had different voltage drops when run at the same current. Seizing on this idea, the original circuit (four transistors, a dozen resistors . . .) was modified to exploit this characteristic and the simple circuit you see here was the result.

Construction

Construction is straightforward. If you haven’t soldered electronic components
before — and this project was designed for the motorist/handyman as well as electronics enthusiasts — then we suggest you practice on something before tackling this project. Soldering is one of those things like swimming or riding a bicycle, or sex — it's okay once you've done it once or twice but you don't practice out on the street.

We recommend you use the printed circuit board designed for this project. The actual layout of the components themselves is not critical but a printed circuit board reduces the possibility of errors.

It is best to mount and solder the resistors first. Follow this by soldering in the diodes D1 and the zener diodes ZD1, ZD2 and ZD3. Carefully follow the accompanying component overlay making sure the diodes are all inserted correctly and in the correct way around. Next, mount the transistors, again referring to the overlay, checking to see they are inserted correctly before soldering.

Finally, mount the light emitting diodes. These too may only be inserted one way. Check with the component overlay and connection diagrams. Make sure they are in the correct sequence. On the component overlay, LED 1 is the red LED, located at the left. The yellow LED is on the right, marked with a '2'. The green LED, marked '3' is between them.

The circuit could be tested at this stage if you have a variable power supply, or access to one. Simply vary the voltage across the range between 11 and 16 volts and note whether the LEDs light up in the correct sequence and close to the voltages indicated.

Mounting
As vehicles vary so much in dash panel layout, we can only make general suggestions.

Clearly, the indicator should be mounted such that the three LEDs are not in direct sunlight. A low part of the dash, but make sure it's readily visible from your normal driving position, will pretty well ensure the display may be easily read during the daytime. Alternatively, if you have an 'overhang' dash, or a portion which overhangs (usually where the instruments are mounted anyway), then a suitable position will generally suggest itself.

Exact mechanical details will have to be determined according to your particular situation. Two holes are provided in the pc board for mounting bolts. Alternatively, the whole assembly may be mounted from the LEDs. Three LED holders inserted through part of the dash panel, or an escutcheon plate mounted on the dash, will hold the LEDs quite securely. Providing the leads on the LEDs are fairly short, the pc board will place little strain on them and the assembly should be mechanically secure.

Connection
The indicator may be installed in vehicles having positive or negative earth electrical systems.

The component overlay shows the connection for a negative earth vehicle. The 'battery +ve' lead goes to the ignition switch — the indicator only operates when the vehicle is being used — the battery negative lead should be taken to a good 'earth' point on the vehicle frame.

For a positive earth vehicle, the lead marked 'battery —ve' goes to the ignition switch connection, while the 'battery +ve' lead goes to the vehicle frame.

Inexpensive prepacked components from top manufacturers.

NOW YOU CAN BUY PREPACKED ELECTRONIC COMPONENTS IN SMALL QUANTITY PACKS AND SAVE!

PACK PRICING EXAMPLES:
- S101 2x7409 s. 49c
- S102 2x7410 s. 49c
- S108 2x2411 s. 56c
- S201 *10xRed lea. s. 1.95c
- S302 5x2N5636A s. 1.09c
- H101 5x3 pin I.C. sock. s. 1.05c

Included in the ever expanding range of Transpac are:
- Resistors
- Capacitors
- Linear and digital
- Chokes
- Transistors
- I.C.'s & sockets
- Switches
- Knobs
- Tags and Cables
- Relays
- Potentiometers
- Resistors
- Fuses
- Optos
- Thermistors
- etc.

From your local stockist or mail order (45c P&P)

197 Shannon Ave, Geelong West. 3218. Phone: (052) 9-2115

(Due to delivery costs prices may vary between stockists)

CUSTOMER INFORMATION

Please mark relevant box

- Price list required
- We are interested in becoming TRANS PAC stockists.

NAME

ADDRESS

P/C

Electronics Today International – April 1979